Available Technology

Long-Life Lithium-Ion Battery

Low-cost energy storage solutions have the promise to make carbon-free renewable solar- and wind-generated energy readily available on the electric grid and to put more electric vehicles (EVs) on the road. However, today’s 10-year lifespan of batteries for these applications cannot compete with the 20- to 30-year lifetime of fossil-fueled power-peaking plants or the 15- to 20-year lifetime of conventional petroleum-powered vehicles. Additionally, the problem of Lithium (Li) loss capacity fade plagues today’s Li-ion battery technologies, shortening their lifespan and restricting their performance. The cost of Li-ion energy storage systems, presently around $325/kWh, is expected to fall by 45% in the next five years, outpacing most competing storage technologies presently under development. But even if costs are brought below $200/kWh, the limited lifetime of Li-ion battery devices will still impede widespread market acceptance. However, with the implementation of grid-based energy storage demonstration projects and numerous EVs on the road, hope for low-cost energy storage solutions has been renewed and technical and economic analyses are increasingly looking beyond upfront expenses in order to optimize energy storage total life-cycle costs.
Abstract: 
Low-cost energy storage solutions have the promise to make carbon-free renewable solar- and wind-generated energy readily available on the electric grid and to put more electric vehicles (EVs) on the road. However, today’s 10-year lifespan of batteries for these applications cannot compete with the 20- to 30-year lifetime of fossil-fueled power-peaking plants or the 15- to 20-year lifetime of conventional petroleum-powered vehicles. Additionally, the problem of Lithium (Li) loss...
Benefits: 
Extended battery lifetime by more than 50% in calendar and cycle life -Adds less than 2% to cell cost -Substantially increases useable energy and operating temperature range -Multiple options for excess Li storage and release mechanism -Improve capacity retention for electrodes (e.g. silicon) that suffer large irreversible capacity loss during formation cycles
applications: 
Internal Laboratory Ref #: 
15-44
Lab Representatives
Share to Facebook Share to Twitter Share to Google Plus Share to Linkedin