Laboratory for Advanced Materials Synthesis


FLC Region

Security Lab



4555 Overlook Avenue S.W.




FUNCTION: NRL's primary site for the exploration of crystal growth via metal-organic chemical vapor deposition (MOCVD). Current research activities include the growth of wide bandgap semiconductor materials and device structures for use in power electronics, RF communications, radar, and optoelectronics. Materials used in this activity are gallium nitride (GaN) and related alloys such as AlGaN and InGaN. Research activities range from basic research studies of materials and crystal growth to more applied investigations involving devices.

DESCRIPTION: The MOCVD growth of homoepitaxial or heteroepitaxial films of GaN, InGaN, and AlGaN is performed on lattice matched and mismatched substrates such GaN, SiC, sapphire, and silicon. The growth is accomplished by the reaction of metalorganic precursors that typically contain the column III metal, e.g., Ga(CH 3 ) 3 or Al(CH 3 ) 3 , and the organometallic or hydride precursor of the column V element, e.g., NH 3 . Depending on the semiconductor being grown, the reactions take place at pressures 5% to 50% of ambient over a substrate heated in the range of 500° to 1100°C. Growth rates are typically determined by the column III precursor flux, which is controlled by the temperature and pressure of the sources and the mass flow rate of the high purity carrier gas flowing through the source, and range from 0.2 A/s to 10 A/s. The crystal quality is a direct function of growth parameters such as the pressure used for deposition. The epilayers can be doped n- or p-type with dopants such as Si or Mg. Through knowledge and control of the growth process,

INSTRUMENTATION: The facility houses two state-of-the-art reactors for growth of GaN and its technologically important ternary compounds. Each reactor is equipped with in situ process monitoring equipment to aid in the growth of complex device structures. An additional reactor is reserved for gallium arsenide or indium phosphide growth and for growth of the technologically important ternary compounds of gallium arsenide. The laboratory has an integral safety system including gas detectors and alarms.


No Technologies


No Facilities


No Equipment


No Programs


No Funds


No Publications


No Awards


No News


No Successes


No Licenses