Available Technology

Additively Manufacturing Bio-Based Conductive Shape Memory Polymer Macrostructure Parts with Highly Ordered Microstructures

The technical challenge of 3D printing shape memory polymers is the chemistry and the rheology of the materials chosen for the shape memory polymer system. Dropjet printing of Newtonian polymers requires curing upon each layer in order to build up the printed part. This requires a UV curable system. This can be achieved either with acrylate or epoxy systems. Acrylate systems are traditionally weak. Epoxy systems require inert atmosphere while curing. 3D printing via stereolithography also requires a UV curable system, which results in similar issues as the dropjet 3D systems. Additive manufacturing via Fused deposition modeling involves the melt extrusion of thermoplastic polymers which harden at room temperature. These printed parts are inherently weak due to their thermoplastic polymer chemistry. Alternatively, 3D printing via direct ink write (DIW) requires that the ink be freestanding, which is achieved with non-Newtonian materials. This requires that the materials to be printed via DIW be either filled with a particulate or pre-cured to achieve the proper rheological conditions for printing.
Patent Abstract: 
LLNL researchers have developed a novel method of 3D printing regular microstructured architectures and subsequent complex macrostructures from additively manufactured bio-based composite thermoset shape memory polymer composite materials. This technology for 3D additively manufactured parts utilizes up to a 4 axis control DIW system for fabricating bio­ based thermally cured epoxy based SMP carbon nano-fiber composite parts.
Internal Laboratory Ref #: 
Lab Representatives
Share to Facebook Share to Twitter Share to Google Plus Share to Linkedin