Available Technology

CLASSIFICATION OF MULTISPECTRAL OR HYPERSPECTRAL SATELLITE IMAGERY USING CLUSTERING OF SPARSE APPROXIMATIONS ON SPARSE REPRESENTATIONS IN LEARNED DICTIONARIES OBTAINED USING EFFICIENT CONVOLUTIONAL SPARSE CODING

An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.
Inventors: 

#N/A

Patent Number: 
US2017213109
Patent Issue Date: 
August 27, 2017
Lab Representatives
Share to Facebook Share to Twitter Share to Google Plus Share to Linkedin