Available Technology

Funnel for Localizing Biological Cell Placement and Arrangment

The present disclosure relates to a funnel apparatus for channeling cells onto a plurality of distinct, closely spaced regions of a seeding surface 

The funnel apparatus has a body portion having an upper surface and a lower surface. The body portion forms a plurality of flow paths, at least one of which is shaped to have a decreasing cross-sectional area from the upper surface to the lower surface. The flow paths are formed at the lower surface to enable cells deposited at the upper surface of the funnel apparatus to be channeled into a plurality of distinct, closely spaced regions on the seeding surface positioned adjacent the lower surface. 

This iCHIP (in vitro Chip-based human investigational platform) method and device allows segregation or selective placement of cells, without using chemicals or permanent physical surface modifications, to grow freely on an unconfined space. It is applicable to any cell type derived from any organ system. It provides better resolution and smaller separation distances (tens of microns) between different cell types used for localized cell placement. It overcomes limitations of PDMS “stencils.” PDMS stencils’ wells are too small to insert micropipette tip that often leads to flooding of the entire stencil, which is suitable for placing only one type of cells but does not work when multiple cell types need to be seeded.

Patent Abstract: 

LLNL has developed a brain-on-a-chip system with a removable cell-seeding funnel to simultaneously localize neurons from various brain regions in an anatomically relevant manner and over specific electrode regions of a MEA. LLNL’s novel, removable cell seeding funnel uses a combination of 3D printing and microfabrication that allows neurons from select brain regions to easily be seeded into an area approximately 2 mm across, with cell populations separated by less than 100 microns.


Neuronal communication, cell migration, cancer metastasis, quorum sensing, growth factor effects, organ-on-a-chip, tissue engineering, and developmental biology. The device could also be used to study bacterial cell interactions (microbiome), cell signaling in proximity without physical contact, disease models (e.g., Alzheimer’s), and early stage drug development.

Internal Laboratory Ref #: 
Lab Representatives
Share to Facebook Share to Twitter Share to Google Plus Share to Linkedin